Editing The Chimera Directive

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 96: Line 96:
==3.0 Spacecraft Structure==
==3.0 Spacecraft Structure==


<font color=goldenrod>'''3.1 Main Skeletal Structure'''</font>
'''3.1 Main Skeletal Structure'''


The primary space frame of the Rosenanté class starship is fabricated from an interlocking series of Terminium/Tritium microfilament truss frames. These members average l.05m² in cross section and are capable of bearing the same load as the standard Tritanium/Duranium truss averaging l.27m² in cross section used in standard starship construction. These truss frames are located an average of 20 meters across the ship's exterior, while the standard trusses would be located every 25 meters along a ships exterior. The tightening of the trusses allows the vessel to withstand greater stress imposed upon it by warp travel, while still producing a lighter space frame.
The primary space frame of the Rosenanté class starship is fabricated from an interlocking series of Terminium/Tritium microfilament truss frames. These members average l.05m² in cross section and are capable of bearing the same load as the standard Tritanium/Duranium truss averaging l.27m² in cross section used in standard starship construction. These truss frames are located an average of 20 meters across the ship's exterior, while the standard trusses would be located every 25 meters along a ships exterior. The tightening of the trusses allows the vessel to withstand greater stress imposed upon it by warp travel, while still producing a lighter space frame.
Line 106: Line 106:
Also attached to these stringers are various conformal devices built into the hulls structure, including elements of the deflector shield grid, H.l.S.S. components, as well as subspace radio antennas, which are incorporated into the skin of the spacecraft.
Also attached to these stringers are various conformal devices built into the hulls structure, including elements of the deflector shield grid, H.l.S.S. components, as well as subspace radio antennas, which are incorporated into the skin of the spacecraft.


<font color=goldenrod>'''3.2 Secondary Framework'''</font>
'''3.2 Secondary Framework'''


Mounted to the primary space frame is a secondary framework of micro-extruded Terminium trusses to which the inner hull of the structure is directly attached. The secondary framework is mounted by means of 3.2 cm diameter X 5.1 centimeter long semi rigid polydurinide support rods, permitting a limited amount of mechanical isolation from the primary space frame for purposes of strain relief, plus sound and vibration isolation. Secondary space frame segments are also separated from each other (although mechanically attached) to permit replacement of inner hull segments and associated utilities infrastructure during major Starbase layover.
Mounted to the primary space frame is a secondary framework of micro-extruded Terminium trusses to which the inner hull of the structure is directly attached. The secondary framework is mounted by means of 3.2 cm diameter X 5.1 centimeter long semi rigid polydurinide support rods, permitting a limited amount of mechanical isolation from the primary space frame for purposes of strain relief, plus sound and vibration isolation. Secondary space frame segments are also separated from each other (although mechanically attached) to permit replacement of inner hull segments and associated utilities infrastructure during major Starbase layover.
Line 114: Line 114:
Exterior hull substrate is joined to the primary load bearing trusses by means of 4.8-cm diameter electron-bonded duranium pins at 1.01-meter intervals. These pins are slip-fitted into an insulating AGP ceramic fiber jacket that provides thermal insulation between the space frame and the exterior hull. The pins, jacketing, and hull segments are gamma welded together.
Exterior hull substrate is joined to the primary load bearing trusses by means of 4.8-cm diameter electron-bonded duranium pins at 1.01-meter intervals. These pins are slip-fitted into an insulating AGP ceramic fiber jacket that provides thermal insulation between the space frame and the exterior hull. The pins, jacketing, and hull segments are gamma welded together.


<font color=goldenrod>'''3.3 Hull Layers'''</font>
'''3.3 Hull Layers'''


The exterior of the spacecraft consists of multiple layers, which afford structural and atmospheric integrity for the space frame, integral wave-guides and field conductive members for the structural Integrity Field (SIP) and H.I.S.S components, and pathways for other utilities (including deflector grids), as well as resistance to radiation and thermal energy.
The exterior of the spacecraft consists of multiple layers, which afford structural and atmospheric integrity for the space frame, integral wave-guides and field conductive members for the structural Integrity Field (SIP) and H.I.S.S components, and pathways for other utilities (including deflector grids), as well as resistance to radiation and thermal energy.
Please note that all contributions to Star Trek : Freedom's Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Project:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)