Jump to content
Toggle sidebar
Star Trek : Freedom's Wiki
Search
Log in
Personal tools
Log in
Pages for logged out editors
learn more
Contributions
Talk
Navigation
Main Page
Recent Changes
Help
Random Article
Random Image
popular
USS Templar
USS Paladin
USS Rosenante
USS Hades
USS Boudicca
USS Nimitz
USS Cochrane
USS Firebrande
USS Shenendoah
MEF
USS Dennison
USS Champlain
USS Mithrandir
USS Mystique
USS Starfire
USS Spectre
Page history
Federation Civil War
links
STF Home
Tools
What links here
Related changes
Special pages
Page information
Editing
Fusion
(section)
Page
Discussion
English
Read
Edit
View history
More
Read
Edit
View history
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Overview== Fusion reactions power the stars and produce all but the lightest elements in a process called nucleosynthesis. While the fusion of lighter elements in stars releases energy, production of the heavier elements absorbs energy. When the fusion reaction is a sustained uncontrolled chain, it can result in a thermonuclear explosion, such as that generated by a hydrogen bomb. Reactions which are not self-sustaining can still release considerable energy, as well as large numbers of neutrons. Research into controlled fusion, with the aim of producing fusion power for the production of electricity, has been conducted for over 50 years. It has been accompanied by extreme scientific and technological difficulties, but resulted in steady progress. Break-even (self-sustaining) controlled fusion reactions have been demonstrated in a few tokamak-type reactors around the world and resulted in producing workable design of the reactor which will deliver ten times more fusion energy than the amount of energy needed to heat up to force nuclei to fuse, even those of the lightest element, hydrogen. This is because all nuclei have a positive charge (due to their protons), and as like charges repel, nuclei strongly resist being put too close together. Accelerated to high speeds (that is, heated to thermonuclear temperatures), they can overcome this electromagnetic repulsion and get close enough for the attractive nuclear force to be sufficiently strong to achieve fusion. The fusion of lighter nuclei, creating a heavier nucleus and a free neutron, will generally release more energy than it took to force them together-an exothermic process that can produce self-sustaining reactions. The energy released in most nuclear reactions is much larger than that in chemical reactions, because the binding energy that holds a nucleus together is far greater than the energy that holds electrons to a nucleus. For example, the ionization energy gained by adding an electron to a hydrogen nucleus is 13.6 electron volts - less than one-millionth of the 17 MeV released in the D-T (deuterium-tritium) reaction shown to the top right. Fusion reactions have an energy density many times greater than nuclear fission β- i.e., per unit of mass the reactions produce far greater energies, even though individual fission reactions are generally much more energetic than individual fusion reactions-which are themselves millions of times more energetic than chemical reactions. Only the direct conversion of mass into energy, such as with collision of matter and antimatter, is more energetic per unit of mass than nuclear fusion. [[Category: Science]]
Summary:
Please note that all contributions to Star Trek : Freedom's Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Project:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)