Jump to content
Toggle sidebar
Star Trek : Freedom's Wiki
Search
Log in
Personal tools
Log in
Pages for logged out editors
learn more
Contributions
Talk
Navigation
Main Page
Recent Changes
Help
Random Article
Random Image
popular
USS Templar
USS Paladin
USS Rosenante
USS Hades
USS Boudicca
USS Nimitz
USS Cochrane
USS Firebrande
USS Shenendoah
MEF
USS Dennison
USS Champlain
USS Mithrandir
USS Mystique
USS Starfire
USS Spectre
Page history
Federation Civil War
links
STF Home
Tools
What links here
Related changes
Special pages
Page information
Editing
Sol
(section)
Page
Discussion
English
Read
Edit
View history
More
Read
Edit
View history
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History of observation == === Early understanding === Humanity's most fundamental understanding of the Sun is as the luminous disk in the sky, whose presence above the horizon creates day and whose absence causes night. In many prehistoric and ancient cultures, the Sun was thought to be a solar deity or other supernatural phenomenon. Worship of the Sun was central to civilizations such as the Inca of South America and the Aztecs of what is now Mexico. Many ancient monuments were constructed with solar phenomena in mind; for example, stone megaliths accurately mark the summer or winter solstice (some of the most prominent megaliths are located in Nabta Playa, Egypt, Mnajdra, Malta and at Stonehenge, England); New Grange, a prehistoric human-built mount in Ireland, was designed to detect the winter solstice; the pyramid of El Castillo at Chichén Itzá in Mexico is designed to cast shadows in the shape of serpents climbing the pyramid at the vernal and autumn equinoxes. With respect to the fixed stars, the Sun appears from Earth to revolve once a year along the ecliptic through the zodiac, and so Greek astronomers considered it to be one of the seven planets (Greek ''planetes'', "wanderer"), after which the seven days of the week are named in some languages. === Development of scientific understanding === One of the first people to offer a scientific explanation for the Sun was the Ancient Greek philosopher Anaxagoras, who reasoned that it was a giant flaming ball of metal even larger than the Peloponnesus, and not the chariot of Helios. For teaching this heresy, he was imprisoned by the authorities and capital sentenced to death, though he was later released through the intervention of Pericles. Eratosthenes might have been the first person to have accurately calculated the distance from the Earth to the Sun, in the 3rd century BCE, as 149 million kilometers, roughly the same as the modern accepted figure. The theory that the Sun is the center around which the planets move was apparently proposed by the ancient Greek Aristarchus of Samos and Indians (see Heliocentrism). This view was revived in the 16th century by Nicolaus Copernicus. In the early 17th century, the invention of the telescope permitted detailed observations of sunspots by Thomas Harriot, Galileo Galilei and other astronomers. Galileo made some of the first known Western observations of sunspots and posited that they were on the surface of the Sun rather than small objects passing between the Earth and the Sun. Sunspots were also observed since the Han dynasty and Chinese astronomers maintained records of these observations for centuries. In 1672 Giovanni Cassini and Jean Richer determined the distance to Mars and were thereby able to calculate the distance to the Sun. Isaac Newton observed the Sun's light using a prism (optics)prism, and showed that it was made up of light of many colors, while in 1800 William Herschel discovered infrared radiation beyond the red part of the solar spectrum. The 1800s saw spectroscopic studies of the Sun advance, and Joseph von Fraunhofer made the first observations of absorption lines in the spectrum, the strongest of which are still often referred to as Fraunhofer lines. When expanding the spectrum of light from the Sun, there are large number of missing colors can be found. In the early years of the modern scientific era, the source of the Sun's energy was a significant puzzle. Lord Kelvin suggested that the Sun was a gradually cooling liquid body that was radiating an internal store of heat. Kelvin and Hermann von Helmholtz then proposed the Kelvin-Helmholtz mechanism to explain the energy output. Unfortunately the resulting age estimate was only 20 million years, well short of the time span of several billion years suggested by geology. In 1890 Joseph Norman Lockyer, who discovered helium in the solar spectrum, proposed a meteoritic hypothesis for the formation and evolution of the Sun. Not until 1904 was a substantiated solution offered. Ernest Rutherford suggested that the Sun's output could be maintained by an internal source of heat, and suggested radioactive decay as the source. However it would be Albert Einstein who would provide the essential clue to the source of the Sun's energy output with his mass-energy equivalence relation ''E'' = ''mc''². In 1920 Sir Arthur Eddington proposed that the pressures and temperatures at the core of the Sun could produce a nuclear fusion reaction that merged hydrogen (protons) into helium nuclei, resulting in a production of energy from the net change in mass. The preponderance of hydrogen in the Sun was confirmed in 1925 by Cecilia Payne-Gaposch. The theoretical concept of fusion was developed in the 1930s by the astrophysicists Subrahmanyan Chandrasekhar and Hans Bethe. Hans Bethe calculated the details of the two main energy-producing nuclear reactions that power the Sun. Finally, a seminal paper was published in 1957 by Margaret Burbidge, entitled "Synthesis of the Elements in Stars". The paper demonstrated convincingly that most of the elements in the universe had been synthesized by nuclear reactions inside stars, some like our Sun. This revelation stands today as one of the great achievements of science. === Solar space missions === The first satellites designed to observe the Sun were NASA's Pioneers 5, 6, 7, 8 and 9, which were launched between 1959 and 1968. These probes orbited the Sun at a distance similar to that of the Earth, and made the first detailed measurements of the solar wind and the solar magnetic field. Pioneer 9 operated for a particularly long period of time, transmitting data until 1987. In the 1970s, Helios 1 and the Skylab Apollo Telescope Mount provided scientists with significant new data on solar wind and the solar corona. The Helios 1 satellite was a joint U.S.-German probe that studied the solar wind from an orbit carrying the spacecraft inside Mercury (planet)Mercury's orbit at perihelion. The Skylab space station, launched by NASA in 1973, included a solar observatory module called the Apollo Telescope Mount that was operated by astronauts resident on the station. Skylab made the first time-resolved observations of the solar transition region and of ultraviolet emissions from the solar corona. Discoveries included the first observations of coronal mass ejections, then called "coronal transients", and of coronal holes, now known to be intimately associated with the solar wind. In 1980, the Solar Maximum Mission was launched by NASA. This spacecraft was designed to observe gamma rays, X-rays and UV radiation from solar flares during a time of high solar activity. Just a few months after launch, however, an electronics failure caused the probe to go into standby mode, and it spent the next three years in this inactive state. In 1984 Space Shuttle Challenger mission STS-41C retrieved the satellite and repaired its electronics before re-releasing it into orbit. The Solar Maximum Mission subsequently acquired thousands of images of the solar corona before re-entering the Earth's atmosphere in June 1989. Japan's Yohkoh (''Sunbeam'') satellite, launched in 1991, observed solar flares at X-ray wavelengths. Mission data allowed scientists to identify several different types of flares, and also demonstrated that the corona away from regions of peak activity was much more dynamic and active than had previously been supposed. Yohkoh observed an entire solar cycle but went into standby mode when an solar eclipse eclipse in 2001 caused it to lose its lock on the Sun. It was destroyed by atmospheric reentry in 2005. One of the most important solar missions to date has been the Solar and Heliospheric Observatory, jointly built by the European Space Agency and NASA and launched on December 2, 1995. Originally a two-year mission, SOHO has now operated for over ten years (as of 2007). It has proved so useful that a follow-on mission, the Solar Dynamics Observatory, is planned for launch in 2008. Situated at the Lagrangian point between the Earth and the Sun (at which the gravitational pull from both is equal), SOHO has provided a constant view of the Sun at many wavelengths since its launch. In addition to its direct solar observation, SOHO has enabled the discovery of large numbers of comets, mostly very tiny sungrazing comets which incinerate as they pass the Sun. All these satellites have observed the Sun from the plane of the ecliptic, and so have only observed its equatorial regions in detail. The Ulysses probe was launched in 1990 to study the Sun's polar regions. It first traveled to Jupiter, to 'slingshot' past the planet into an orbit which would take it far above the plane of the ecliptic. Serendipitously, it was well-placed to observe the collision of Comet Shoemaker-Levy 9 with Jupiter in 1994. Once Ulysses was in its scheduled orbit, it began observing the solar wind and magnetic field strength at high solar latitudes, finding that the solar wind from high latitudes was moving at about 750 km/s which was slower than expected, and that there were large magnetic waves emerging from high latitudes which scattered galactic cosmic rays. Elemental abundances in the photosphere are well known from astronomical spectroscopic studies, but the composition of the interior of the Sun is more poorly understood. A solar wind sample return mission, Genesis (spacecraft)Genesis, was designed to allow astronomers to directly measure the composition of solar material. Genesis returned to Earth in 2004 but was damaged by a crash landing after its parachute failed to deploy on reentry into Earth's atmosphere. Despite severe damage, some usable samples have been recovered from the spacecraft's sample return module and are undergoing analysis. The Solar Terrestrial Relations Observatory (STEREO) mission was launched in October 2006. Two identical spacecraft were launched into orbits that cause them to (respectively) pull further ahead of and fall gradually behind the Earth. This enables stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections. If one were to observe it from Alpha Centauri, the closest star system, the Sun would appear to be in the constellation Cassiopeia (constellation)Cassiopeia.
Summary:
Please note that all contributions to Star Trek : Freedom's Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Project:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)