Editing Necron Red II

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 83: Line 83:
==Life==
==Life==


The current understanding of planetary habitability—the ability of a world to develop and sustain life — favors planets that have liquid water on their surface. This requires that the orbit of a planet lie within a habitable zone. Necron Red II orbits half an astronomical unit beyond this zone and this, along with the planet's thin atmosphere, causes water to either freeze on its surface or sublimate into the atmosphere. The past flow of liquid water, however, demonstrates the planet's potential for habitability. Recent evidence has suggested that any water on the surface would have been too salty and acidic to support native life. However, we see the tenaciousness of biological life everywhere we look on Necron Red II. Through either biological evolution or through adapting alternate biological processes, the carbon based lifeforms on Necron Red II have thrived despite the harsh conditions that prevail here.
The current understanding of planetary habitability—the ability of a world to develop and sustain life — favors planets that have liquid water on their surface. This requires that the orbit of a planet lie within a habitable zone. Necron Red II orbits half an astronomical unit beyond this zone and this, along with the planet's thin atmosphere, causes water to freeze on its surface. The past flow of liquid water, however, demonstrates the planet's potential for habitability. Recent evidence has suggested that any water on the surface would have been too salty and acidic to support native life. However, we see the tenaciousness of biological life everywhere we look on Necron Red II. Through either biological evolution or through adapting alternate biological processes, the carbon based lifeforms on Necron Red II have thrived despite the harsh conditions that prevail here.


The lack of a magnetosphere and extremely thin atmosphere of Necron Red II are an even greater challenge: the planet has little heat transfer across its surface, poor insulation against radioactive bombardment and the ionizing effects of Necron Red's harsh solar wind. This along with insufficient atmospheric pressure to retain water in a liquid form (water instead sublimates to a gaseous state) places the odds of native life flourishing here astronomical.  Necron Red II is also nearly, or perhaps totally, geologically dead; the end of volcanic activity has stopped the recycling of chemicals and minerals between the surface and interior of the planet.
The lack of a magnetosphere and extremely thin atmosphere of Necron Red II are an even greater challenge: the planet has little heat transfer across its surface, poor insulation against radioactive bombardment and the ionizing effects of Necron Red's harsh solar wind. This along with insufficient atmospheric pressure to retain water in a liquid form (water instead sublimates to a gaseous state) places the odds of native life flourishing here astronomical.  Necron Red II is also nearly, or perhaps totally, geologically dead; the end of volcanic activity has stopped the recycling of chemicals and minerals between the surface and interior of the planet.
Please note that all contributions to Star Trek : Freedom's Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Project:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)