Editing Skoria

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 81: Line 81:
'''Hydrosphere'''
'''Hydrosphere'''


The abundance of water on Skoria's surface is a unique feature that distinguishes that planet  from the others in the [[Alakaram System]]. The planet's hydrosphere consists chiefly of the oceans, but technically includes all water surfaces in the world, including inland seas, lakes, rivers, and underground waters down to a depth of 2,000 m. The deepest underwater location is in the Western Ocean with a depth of −10,911.4 m.  The average depth of the oceans is 3,800 m, more than four times the average height of the continents.
The abundance of water on Skoria's surface is a unique feature that distinguishes that planet  from the others in the [[Skor System]]. The planet's hydrosphere consists chiefly of the oceans, but technically includes all water surfaces in the world, including inland seas, lakes, rivers, and underground waters down to a depth of 2,000 m. The deepest underwater location is in the Western Ocean with a depth of −10,911.4 m.  The average depth of the oceans is 3,800 m, more than four times the average height of the continents.


The mass of the oceans is approximately 1.35×1018 metric tons, or about 1/4400 of the total mass of the planet, and occupies a volume of 1.386×109 km³. If all of the land on Skoria were spread evenly, water would rise to an altitude of more than 2.7 km. About 97.5% of the water is saline, while the remaining 2.5% is fresh water. The majority of the fresh water, about 68.7%, is currently in the form of ice.
The mass of the oceans is approximately 1.35×1018 metric tons, or about 1/4400 of the total mass of the planet, and occupies a volume of 1.386×109 km³. If all of the land on Skoria were spread evenly, water would rise to an altitude of more than 2.7 km. About 97.5% of the water is saline, while the remaining 2.5% is fresh water. The majority of the fresh water, about 68.7%, is currently in the form of ice.
Line 123: Line 123:
Skoria's rotation period relative to the fixed stars, called its stellar day, is 86164.098903691 seconds of mean solar time (UT1), or 23h 56m 4.098903691s. Skoria's rotation period relative to the precessing or moving mean vernal equinox, named its sidereal day, is 86164.09053083288 seconds of mean solar time  (23h 56m 4.09053083288s). Thus the sidereal day is shorter than the stellar day by about 8.4 ms.
Skoria's rotation period relative to the fixed stars, called its stellar day, is 86164.098903691 seconds of mean solar time (UT1), or 23h 56m 4.098903691s. Skoria's rotation period relative to the precessing or moving mean vernal equinox, named its sidereal day, is 86164.09053083288 seconds of mean solar time  (23h 56m 4.09053083288s). Thus the sidereal day is shorter than the stellar day by about 8.4 ms.


Apart from meteors within the atmosphere and low-orbiting satellites, the main apparent motion of celestial bodies in the planet's sky is to the west at a rate of 15°/h = 15'/min. This is equivalent to an apparent diameter of Alakaram every two minutes.
Apart from meteors within the atmosphere and low-orbiting satellites, the main apparent motion of celestial bodies in the planet's sky is to the west at a rate of 15°/h = 15'/min. This is equivalent to an apparent diameter of Skor every two minutes.


'''Orbit'''
'''Orbit'''


Skoria orbits Alakaram at an average distance of about 150 million kilometers every 365.2564 mean solar days, or one sidereal year. From Skoria, this gives an apparent movement of Skor eastward with respect to the stars at a rate of about 1°/day, or a Solar diameter every 12 hours. Because of this motion, on average it takes 24 hours—a solar day—for Skoria to complete a full rotation about its axis so that Alakaram returns to the meridian. The orbital speed of the planet averages about 30 km/s (108,000 km/h), which is fast enough to cover the planet's diameter (about 12,600 km) in seven minutes, and the distance to it's Moon (384,000 km) in four hours.
Skoria orbits Skor at an average distance of about 150 million kilometers every 365.2564 mean solar days, or one sidereal year. From Skoria, this gives an apparent movement of Skor eastward with respect to the stars at a rate of about 1°/day, or a Solar diameter every 12 hours. Because of this motion, on average it takes 24 hours—a solar day—for Skoria to complete a full rotation about its axis so that Skor returns to the meridian. The orbital speed of the planet averages about 30 km/s (108,000 km/h), which is fast enough to cover the planet's diameter (about 12,600 km) in seven minutes, and the distance to it's Moon (384,000 km) in four hours.


The Moon, Shayala, revolves with the planet around a common barycenter every 27.32 days relative to the background stars. When combined with the Skoria-Shayala system's common revolution around Alakaram, the period of the synodic month, from new moon to new moon, is 29.53 days. Viewed from the celestial north pole, the motion of Skoria, the Moon and their axial rotations are all counter-clockwise. Viewed from a vantage point above the north poles of both the Alakaram and Skoria, the latter appears to revolve in a counterclockwise direction about the prior. The orbital and axial planes are not precisely aligned: Skoria's axis is tilted some 23.5 degrees from the perpendicular to the Skoria–Alakaram plane, and the Skoria- Shayala plane is tilted about 5 degrees against the Skoria-Alakaram plane. Without this tilt, there would be an eclipse every two weeks, alternating between lunar eclipses and solar eclipses.
The Moon, Shayala, revolves with the planet around a common barycenter every 27.32 days relative to the background stars. When combined with the Skoria-Shayala system's common revolution around Skor, the period of the synodic month, from new moon to new moon, is 29.53 days. Viewed from the celestial north pole, the motion of Skoria, the Moon and their axial rotations are all counter-clockwise. Viewed from a vantage point above the north poles of both the Skor and Skoria, the latter appears to revolve in a counterclockwise direction about the prior. The orbital and axial planes are not precisely aligned: Skoria's axis is tilted some 23.5 degrees from the perpendicular to the Skoria–Skor plane, and the Skoria- Shayala plane is tilted about 5 degrees against the Skoria-Skor plane. Without this tilt, there would be an eclipse every two weeks, alternating between lunar eclipses and solar eclipses.


The gravitational sphere of influence, of the planet is about 1.5 Gm (or 1,500,000 kilometers) in radius. This is maximum distance at which the planet's gravitational influence is stronger than the more distant Sun or planets. Objects must orbit the Skoria within this radius, or they can become unbound by the gravitational perturbation of Alakaram.
The gravitational sphere of influence, of the planet is about 1.5 Gm (or 1,500,000 kilometers) in radius. This is maximum distance at which the planet's gravitational influence is stronger than the more distant Sun or planets. Objects must orbit the Skoria within this radius, or they can become unbound by the gravitational perturbation of Skor.


Skoria, along with the [[Alakaram System]], is situated in the Milky Way galaxy, orbiting about 28,000 light years from the center of the galaxy, and about 20 light years above the galaxy's equatorial plane spanning the border between the [[Alpha Quadrant|Alpha]] and the [[Beta Quadrant]] of the Orion spiral arm.
Skoria, along with the [[Skor System]], is situated in the Milky Way galaxy, orbiting about 28,000 light years from the center of the galaxy, and about 20 light years above the galaxy's equatorial plane in the Alpha Quadrant of the Orion spiral arm.


'''Axial Tilt and Seasons'''
'''Axial Tilt and Seasons'''


Because of the axial tilt of the planet, the amount of sunlight reaching the surface varies over the course of the year. This results in seasonal change in climate, with summer in the northern hemisphere occurring when the north pole is pointing toward Alakaram, and winter taking place when the pole is pointed away. During the summer, the day lasts longer and Alakaram climbs higher in the sky. In winter, the climate becomes generally cooler and the days shorter. Above the arctic circle, an extreme case is reached where there is no daylight at all for part of the year—a polar night. In the southern hemisphere the situation is exactly reversed, with the south pole oriented opposite the direction of the north pole.
Because of the axial tilt of the planet, the amount of sunlight reaching the surface varies over the course of the year. This results in seasonal change in climate, with summer in the northern hemisphere occurring when the north pole is pointing toward Skor, and winter taking place when the pole is pointed away. During the summer, the day lasts longer and Skor climbs higher in the sky. In winter, the climate becomes generally cooler and the days shorter. Above the arctic circle, an extreme case is reached where there is no daylight at all for part of the year—a polar night. In the southern hemisphere the situation is exactly reversed, with the south pole oriented opposite the direction of the north pole.
   
   
From space, the planet can be seen to go through phases similar to the phases it's Moon. By astronomical convention, the four seasons are determined by the solstices—the point in the orbit of maximum axial tilt toward or away from Alakaram—and the equinoxes, when the direction of the tilt and the direction to Alakaram are perpendicular.  
From space, the planet can be seen to go through phases similar to the phases it's Moon.By astronomical convention, the four seasons are determined by the solstices—the point in the orbit of maximum axial tilt toward or away from Skor—and the equinoxes, when the direction of the tilt and the direction to Skor are perpendicular.  


The angle of the planet's tilt is relatively stable over long periods of time. However, the tilt does undergo nutation; a slight, irregular motion with a main period of 18.6 years. The orientation (rather than the angle) of Skoria's axis also changes over time, precessing around in a complete circle over each 25,800 year cycle; this precession is the reason for the difference between a sidereal year and a tropical year. Both of these motions are caused by the varying attraction of Alakaram and Shayala on the planet's equatorial bulge. From the perspective of Skoria, the poles also migrate a few meters across the surface. This polar motion has multiple, cyclical components, which collectively are termed quasi periodic motion. In addition to an annual component to this motion, there is a 14-month cycle called the Ald'ar wobble. The rotational velocity of the planet also varies in a phenomenon known as length of day variation.
The angle of the planet's tilt is relatively stable over long periods of time. However, the tilt does undergo nutation; a slight, irregular motion with a main period of 18.6 years. The orientation (rather than the angle) of Skoria's axis also changes over time, precessing around in a complete circle over each 25,800 year cycle; this precession is the reason for the difference between a sidereal year and a tropical year. Both of these motions are caused by the varying attraction of Skor and Shayala on the planet's equatorial bulge. From the perspective of Skoria, the poles also migrate a few meters across the surface. This polar motion has multiple, cyclical components, which collectively are termed quasi periodic motion. In addition to an annual component to this motion, there is a 14-month cycle called the Ald'ar wobble. The rotational velocity of the planet also varies in a phenomenon known as length of day variation.


Since the southern hemisphere is tilted toward Alakaram at about the same time that the planet reaches the closest approach to the Sun, the southern hemisphere receives slightly more energy from Alakaram than does the northern over the course of a year. However, this effect is much less significant than the total energy change due to the axial tilt, and most of the excess energy is absorbed by the higher proportion of water in the southern hemisphere.
Since the southern hemisphere is tilted toward Skor at about the same time that the planet reaches the closest approach to the Sun, the southern hemisphere receives slightly more energy from Skor than does the northern over the course of a year. However, this effect is much less significant than the total energy change due to the axial tilt, and most of the excess energy is absorbed by the higher proportion of water in the southern hemisphere.


'''History'''
'''History'''
Please note that all contributions to Star Trek : Freedom's Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Project:Copyrights for details). Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)